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Abstract-We study the interaction of a plane sound wave with a fixed, elastic, tungsten carbide
(WC), spherical shell in water. The shell is air filled and its motions are described by the exact three
dimensional equations ofelastodynamics. The form-function of the problem is obtained by solving
the resulting classical boundary value problem for the required coefficients. The form-function so
obtained is displayed vs non-dimensional frequency k.a in a very wide spectral band never obtained
before in the analysis of this type of problem. Various physical effects are presented as the causes
of the several features influencing the shape of the form-function in various spectral regimes. The
computed plots serve to corroborate these interpretations, and to quantitatively exhibit these effects
for both thin and thick shells. We find that Lamb waves of various orders combined with waves
undergoing multiple bounces inside the shell thickness, and with externally diffracted Franz waves,
serve to explain all the mechanisms of scattering and the resonance features displayed in the cross
sectional plots at all frequencies. Lamb waves of order zero and one are dominant over all other
mechanisms observable within this wide spectral band. The influences of specular reflections and
Franz-wave diffraction contributions are shown to be minimal.

I. INTRODUCTION

Modern studies ofsound scattering by elastic, air-filled, shells in water started in the 1960s.
The spherical shell in particular was first treated by Goodman and Stem[I], and afterwards,
by Hickling and co-workers[2-4]. These papers described the shell motions by the exact
equations of three-dimensional elasticity. Other treatments of the problem in subsequent
works[5-8J, used shell theories as well. Details of the elasticity formulation required to set
up and solve such boundary value problems for separable geometries have been available
for some time, and have been summarized in convenient uniform and systematic forms[9J.
The specific case of the spherical shell coated with a viscoelastic absorbing layer showed
how the shell's backscattering cross-section and the resonance features contained within it,
could be modified by means of the absorbing layer[IO]. The theoretical analysis of the
sound/structure interaction problem that occurs when a plane wave falls on a submerged
spherical shell has been studied by means of the resonance scattering theory (RST) [1 OJ.
The methodology of the RST has been presented in a series of papers [10-17], and will not
be re-examined here. However, we will use its general principles founded on background
subtraction and resonance isolation[17] to interpret the high-frequency response of both
thin and thick shells undergoing resonance scattering. This interpretation can be made in
terms of symmetric and antisymmetric Lamb waves[18] as well as by a combination of
waves undergoing multiple bounces inside the shell thickness added to contributions from
diffracted Franz waves[19-21] in the water, or to strong specular reflections. In what follows,
we will obtain and display the form-function of a spherical shell governed by the exact
elasticity equations, up to very high frequencies (namely, kID = 200). Modem com·
putational advances permit these computations for bodies as complex as shells governed
by the exact three-dimensional elastodynamic equations. Until recently, these high spectral
regions could only be reached by means of (qualitative) asymptotic methods such as
the Watson-Sommerfeld method[I9-21]. The present availability of exact, quantitative,
computed results, verifies the physical interpretations and the spectral influence of the
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various effects that we present in this work. In particular, we analyze the effects of the first
few Lamb wave modes on the cross-section of the shell, which become very evident at the
higher frequencies that we display here. These Lamb wave modes are dominant over the
other three possible contributions. Although not examined here, the conclusions that have
emerged from this analysis remain valid when the shell is insonified by finite sound beams
of pulses, in the manner briefly studied in some earlier works[22].

2. THEORETICAL BACKGROUND

A plane wave is incident on an elastic, air-filled, spherical shell in water. The total
pressure field in the water is

00

PI(r,e,t) =Po e- iw1 L in(2n+l)Pn(cos O)[jn(klr)+Anh~l)(klr)]. (1)
n=O

The elastic (Debye) potentials within the shell are

00

¢d, = Po e- iw1 L in(2n+ I)Pn(cosO) [B,Jn(kd/)+CnYn(kd/)]
n=O

00

"'s, = Po e- iw1 L in(2n+ I)Pn(cos 0) [D,Jn(ks/) +EnYn(ks/)]'
n= 0

The pressure field inside the shell is

00

P3 = Po e- iw1 L in(2n+ I)Pn(cos O)FnJn(k3r).
n= 0

The various wave numbers in the three media are

(2)

(3)

W
kd =-

, Cd,
k = W

J2 C'f2

(4)

where Cl and C3 are the sound speeds in water and the air, respectively, and Cd" Cs , are the
dilatational and shear wave speeds in the shell. Water is medium 1, the shell is medium 2,

.• and air is medium 3. The six sets of constants An> Bn> Cn> Dn> En and Fn are determined
from the boundary conditions, which are in this case

r~;) = -PI;

r~;) = -P3;

U~I)=U~2); and r~)=O at r=a

uF) = U~3); and r~) = 0 at r = b
(5)

where a and b are the outer and inner radius of the spherical shell. Expressions for the
stresses and displacements in terms of the Debye potentials in the shell or the two fluids
have been determined in earlier work[9-12] in spherical (and other) coordinate systems.
Use of these expressions in the solutions (i.e. eqns (1)-(4)) and in the boundary conditions
(eqn (5)) yields the following algebraic system of equations:
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d 11 d l2 d l3 d l4 d l5 0 An AT
d21 dn d23 d24 d25 0 Bn A!
0 d32 d33 d34 d35 0 en 0

.QJ[x] =
0 d42 d45 d46

::::
0

:::: [b] (6)
d43 d44 Dn

0 d52 d 53 d54 d 55 d 56 En 0

0 d62 d63 d64 d65 0 Fn 0

which can be solved by Cramer's rule for any of the sets of coefficients An, Bm.... The
elements of matrix ~ and column vector [b] are found by application of the boundary
conditions and are all listed in the Appendix, in non-dimensional form.

The backscattering cross-section, CT, is given by

(7)

which is normalized to na 2
, and where An is the only one of the six sets of coefficients that

could enter its expression. The form-function Ifoo(n)! is usually the quantity computed or
measured.

This form-function contains the partial waves j,,(n) (also referred to as normal modes,
or the terms of the Rayleigh series) as follows:

(8)

where we have used the 'Optical Theorem': 2A n = Sn-I, where Sn is the scattering function
of the problem.

The coefficients 2A n in eqn (8), are the ratios of two 6 x 6 determinants, which according
to Cramer's rule are as follows:

AT d l2 d l3 d l4 d l5 0

A! dn d23 d 24 d25 0

2 0 d32 d33 d34 d35 0

2An= IDnl 0 d42 d43 d44 d45 d46
= Sn- I (9)

0 d 52 d53 d 54 d55 d56

0 d62 d63 d64 d65 d66

where IDnl is the determinant of matrix ~ in eqn (6). The coefficients An, with the special
normalized form of the dij elements in the Appendix, make these spherical shell results
compatible and consistent with earlier work[13-16] on this subject. Figure I shows the
geometry of the problem.

3. PHYSICAL INTERPRETATION OF THE FORM·FUNCTION

The pertinent material properties of WC are as follows. The density is P2 = 13.1 g
em- 3, the speed of dilatational waves is Cd

2
= 6.95 X 105 em S-l, and the speed of shear

waves is C'2 = 3.94 X 105 cm S-I. Those of water and air were given earlier[I(}-12].
Using a CDC CYBER 170/720 computer we have implemented the normal-mode,

exact, elasticity formulation for the form-function given in eqns (8) and (9). Computer
codes to perform similar calculations[9] have been available at NSWC since 1975. We can
generate the form-function for any material composition combination for shell, filler, and
outer fluid, of any thickness, in any frequency band of interest. The only limitation at
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Fig. I. Shell geometry and incident plane wave.
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Fig. 2. (a) Form-function of a thin we, air-filled, spherical shell of thickness h = I% in water, in
the range: 0 ~ x ;;;; 100. (b) Same, in the range: 100 ;;;; x ;;;; 200. Ordinates are expanded for clarity,

present seems to be the cost of the run. All the form-function results to be displayed here
are for an air-filled, we, spherical shell in water, in the extremely wide spectral band:
o~ kla ~ 200. We will show two different thicknesses to illustrate what we consider
"thick" and "thin" behaviors.

Figure 2 shows the form-function of an air-filled, we, spherical shell of relative
thickness It = 1-bla = 0.01 = 1% in water, vs non-dimensional frequency Xl == k lao This
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Fig. 3. (a) Form-function of a thick we, air-filled, spherical shell of thickness h = 5% in water, in
the range: 0 ~ x ~ 100. (b) Same, in the range: 100 ~ x ~ 200. Ordinates are expanded for clarity,

could be considered to be the spectral response of a thin shell. Although the thickness is
quite small, the "proper" background that isolates the resonances is still the rigid one. Figure
2(a) shows the band 0 ~ k1a ~ 100, and Fig. 2(b) displays the band: 100 ~ k1a ~ 200.

Based on earlier work[l7] that need not be repeated here, we now know that the rigid
background is the "proper background" we must choose to isolate most shell's resonance
features in their form-function. It was shown[l7] that the rigid background isolates shell
resonances for all thicknesses down to very thin values of h such as 10- 3. Below this value,
one must use the soft background to isolate resonances. In the present work we remain
above the value h = 10- 2 = I %, therefore, the rigid background is always suitable to isolate
resonances. More detailed studies will be further pursued elsewhere.

Figures 3(a) and (b) repeat the same displays, in the same bands, for a we shell of
relative thickness h = 5%. This could be considered the spectral response of a thick shell,
but obtained exactly from the three-dimensional equations ofdynamic elasticity as described
above, since no shell theory approximation was used here. Shells for which h > 5% are rare
in practical cases for which this analysis could be applicable.

The background suppression process described above is basic to the RST because this
is how the resonance spectrogram[ I I] of macroscopic targets can be isolated and extracted
from its returned echoes. The physical interpretation introduced by the RST is best seen
by rewriting the (S. - I) factor in eqn (8) in the form [1 0, 14, IS]

S - I - 2' 2i~~) [~ -r~]/2 + -i~~) . ):<')]
• - 1 e t.. <,) '(r<')/2) e Sin 'o.

j_1 x-x.j +1 .j
(10)

which explicitly exhibits the resonance/background interaction always present within each
partial wave. It is possible to express this interaction in analytic form, since in this case the
body is separable. Resonance and background contributions are respectively represented
by the two terms being added inside the bracket. The definitions of x<,;), r~) ... have been
given earlier[IO--13] in related cases pertaining to other combinations of materials and
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geometries. We should repeat that in the case of an extremely thin shell, h ~ 0, I%. the
resonances will be isolated by subtraction of the soft background. This is so because in this
case the shell wall becomes tenuous, and the shell takes on more of the character of a gas
bubble in a liquid.

The spectral shape of the form-function is affected by contributions due to the
scatterer's shape and/or to the penetrable composition. Body shape effects are:

(a) specular reflections from the shell's outer surface r == a,
(b) diffracted Franz-type waves circumnavigating the shell.

Specular reflections produce no extrema in the fonn-function. Franz waves are analogous
to those around rigid bodies, and can only cause minor extrema in the fonn-function. Both
these effects are small, and play minor roles.

Contributions due to the shell's penetrability are basically of two types:

(a) Waves scattered from the shell's inner surface r == b. These waves can bounce many
times inside the thickness. For thin shells they are more manifest at high k la. For thick
shells they are more important at low k la.

(b) Symmetric and antisymmetric Lamb waves[18] of order zero (i.e. So and ao, respec
tively). For thin shells, So is dominant. The ao-wave manifests itself only in the region of
"strong flexures", where xlh ::::; 1. Higher-order Lamb waves are important only at very
high kla. It follows that a thick shell has a form-function almost totally dominated by the
"momentless" and "flexural" Lamb waves, So and ao, within the band °~ k la ~ 200.

The influence ofeach of the effects described above may be detennined from an analysis
of the plots displayed in Figs 2 and 3. We begin with the analysis of the behavior of a thin
shell (Fig. 2). In Fig. 2(a) we see no contribution due to body shape except for the low k la
region °~ k 10 ~ 3, in which the shell's giant monopole resonance is observed. This
resonance is caused by the n == °mode. After k \a = 3, a periodic pattern of "inverted
U's" develops immediately. This is the effect of the Lamb mode So. This behavior persists
until k la ::::; 70, where the effect of ao starts to be felt. This is the region of "strong flexures"
where kla == XI == h-I ::::; 100. This region continues up to XJ == k\a::::; 120, after which it
dies out. At k la ::::; 160, a new set of resonance extrema develops. This is the effect of the
antisymmetric Lamb mode a I> that goes on beyond k la == 200, where the plot ends.

We can determine the phase (or group) velocities of these waves from the periodic
spacings in-between resonances in the regions 3 ~ k la ~ 70, and 160 ~ k \a ~ 200. These
waves propagate almost without dispersion (as is evidenced by the fact that the resonance
spacings are quasi-uniform in both regions) and therefore cg' == C~h == cf' == C~h = 4.15 x
lOs cm s- I, as we can read from Fig. 2.

The shell of Fig. 3 is a thick shell with h = 5% == 1/20. There is hardly any activity
due to the Lamb symmetric mode So, and the region of strong flexures develops immediately
up to X == k Ja == h- 1 ~ 20. This is followed by the moderate flexures seen in the rest of the
plot (i.e. 25 ~ k la ~ 100, and 100 ~ k \a ~ 200). The strong flexures are caused by ao and
the moderate flexures by aJ. Higher-order Lamb modes (I> 1) would influence the fonn
function only at very high frequencies beyond k1a = 200. At these high frequencies and
beyond, it would be more advantageous (and less expensive) to generate these plots by
means of asymptotic techniques such as the Watson-Sommerfeld method[19]. Superimposed
on the a I-effect we see additional narrow resonances; these are causeq by successive wave
bounces from the shell's inner surface, r = b.

The spacings between extrema in the region of strong flexures or in the region of
moderate flexures can be used to detennine the phase or the group velocities of the ao and
al waves, which are again seen to propagate almost without dispersion. This results in a
value for eg' = C~h = ef' = C'jh ~ 3.1 x lOs cm s- I (Fig. 3).

The entire approach shown here is exact since it is based on the general equations of
dynamic elasticity, no approximation based on a shell theory having been introduced. The
solution is exact because the geometry is separable and the classical nonnal-mode solution
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is possible. For shelIs in water, this only happens in the spherical, cylindrical or Cartesian
coordinate systems.

We conclude with some remarks about the phase velocities of the first two (SO,Sl) and
antisymmetric (00,01) Lamb waves for a WC plate in vacuum. Many authors have studied
these waves, and expressions for their phase velocities are known to be given[18] by the
roots of the following equations.

For the symmetric branches (s i' j = 0,1, ...)

tan [k.,dJ(1-~)]

tan [ k,dJ (~~ - ~~)]
(11 )

For the antisymmetric branches (OJ,j = 0, I, ...)

(12)

These equations are solved for the various values of clc, along each branch, and are
plotted vs the frequency-thickness product f d, where 2d is the thickness of the plate, for
various values of the ratio ('dic,. For a metal, this ratio is a function of the Poisson ratio v
as follows:

Cd = J(2-2V).
c, I-2v

(13)

For WC, the Poisson ratio is v = 0.2632, thus, the above ratio is 1.7639. Plots of the
phase velocities (clcs) normalized to c.. vs f d, for cdlc, = 1.7639 are shown in Fig. 4, for the
first couple of symmetric and antisymmetric branches (namely, j = 0 and 1). In order to
relate the frequency at which a certain mode in Fig. 4 affects the form-function plots shown
in Figs 2 and 3, we use the following relation:

------ -----.,
SYMMETRIC AND ANTISYMMETRIC LAMB WAVES

FOR TUNGSTEN CARBIDE

3.

c
c.

8. ---------

4.

5.

Fig. 4. Dispersion plots for the phase velocities of the first few (so, s" 00' oJ) Lamb modes of a we
plate in water.
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, c\ ( b)fh == XI- 1--
2n a

(14)

where h' == a-h == 2d, which can bc derived immediately on geometrical considerations.
This relates the abscissas of Fig. 4 with those of Figs 2 and 3 even though Fig. 4 pertains
to a flat plate and Figs 2 and 3 to a spherical shell.

We remark in closing that the dispersion curves for a free-free we plate shown in Fig.
4 are undistinguishable from those of a fluid-loaded plate, particularly when these fluids
are water and air. Tungsten carbide is one of the toughest and most rigid metals known. In
view of these desirable properties, most underwater acoustic calibrating targets, particularly
shells and ball bearings, are made of this substance. Although dispersion plots similar to
those shown in Fig. 4 have been computed for other metals, mainly for steel[18], we have
recomputed them here for we in view of its particular usefulness for our study. We repeat
that the dispersion curves in Fig. 4 for a plate can be used for the purpose of identifying
which Lamb modes affect which portions of the backscattering cross-sections of these
spherical shells displayed in Figs 2 and 3, provided that we use eqn (14) to relate the abscissas
in Figs 2 and 3, to those of Fig. 4. This seems to be sufficient to account for the curvature
correction in this type of display. The fluid-loading correction is negligible. If exact dis
persion curves for the Lamb waves circumnavigating a spherical shell, fluid-loaded exter
nally by water and internally by air, were to be rigorously computed, one would have to
plot the families of roots of the determinant of matrix ~ in eqn (6) vs x I' This calculation
is not required for our present purposes and will be pursued elsewhere.

4. CONCLUSIONS

We have obtained the form-function If(n)1 of thin and thick spherical we shells in
water, up to very high frequencies (i.e. k la == 200). We demonstrated the influence of four
effects on the frequency dependence of f(n) and concluded that the strongest and most
dominant of these effects are the Lamb symmetric and antisymmetric modes. We quan
titatively exhibit the effect of each one of these modes on the form-function plots. As the
frequency increases, higher and higher modes make their influence felt in the cross-sectional
plots. These influences vary with shell thickness, as shown by the different spectral responses
exhibited in Figs 2(a), (b) and 3(a), (b). The dispersion plots for the phase velocities of the
first few Lamb modes (so, Sl, ao, al) are obtained for we, and the frequencies in these plots
and those in Figs 2 and 3 are found to be related by a simple expression, namely eqn (14).

The non-dimensionalization procedure followed to obtain the above form of these
elements was discussed in Ref. [21]. The above list has certain similarities with the analogous
list of coefficients for a cylindrical shell given in the Appendix of Ref. [11].
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APPENDIX

The 30 non-vanishing elements appearing in eqn (6) are as follows:

d = (~)k2a2hll)(k a)
11 P2 J2 It I

d l2 = [2n(n+ 1)-k;,a2)j.(kd,a)-4kd,aj~(kd,a)

d l3 = [2n(n+ 1)-k;,a2]y.(kdla)-4kd,ay~(kd,a)

d l4 = 2n(n+ I) [k"aj~(k"a)-j.(k"a)]

d" = 2n(n+ I)[k"ay~(k"a)-y.(k"a)]

d21 = -k,ah~I)'(k,)

d22 = kd,aj~(kd,a)

d2J = kd,ay~(kd,a)

d 24 = n(n+ I)J.(k"a)

d 25 = n(n+ I)y.(k."a)

d~l = 2U.(k",a)-k",{/J~(kd,a)]

d3J = 2[y.(kd,a)-kd,ay~(kd,a)]

d34 = 2k"aJ~(k"a)+[k;,a2-2n(n+ 1)+2)j.(k"a)

d 35 = 2k,,ay~(k,,a)+ [k;,a 2-2n(n + 1)+ 2]y.(k"a)

d4l = -4k",bj~(kd,b)+ [2n(n+ I)-k;,bl)j.(kd,b)

d43 = -4kd,by~(kd,b)+[2n(n+ 1)-k;,a2]y.(kd,b)

d44 = 2n(n+ I)[k"bj~(k")-J.(k,,b)]

d45 = 2n(n+ I)[kd,by~(k"b)-y.(k"b)]

d46 = (~)k;,b2j.(kJb)

d 52 = kd,bJ~(kdlb)

d5J = kd,by~(kd,b)
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dS4 = n(n+ I)Jn(k"b)

dss = n(n+ I)y.(k"b)

dSb = -k)bJ~(k)b)

d62 = 2U.(kd,b) -kd,bJ:(kd,b)]

db) = 2[y.(kd,b)-kd,by:(kd,b)]

d64 = 2k"bJ~(k"b)+ [ki,a 2-2n(n+ I) +2Jj.(k"b)

d6s = 2k"by:(k"b)+ [ki,a'-2n(n+ 1)+2]y.(k"b)

and also

Ai = -(::)ki,a2J.(k,a)

Ai = k,aJ~(k,a).


